Capacity of nano-reactors of AOT micro-emulsions to form and sustain ultra small semiconductor quantum dots.

نویسندگان

  • Prashant D Sawant
  • Lavanya M Ramaniah
  • C Manohar
چکیده

Microemulsions (MEs) are increasingly being used as nano-reactors for the formation and synthesis of nanoparticles or quantum dots (QDs). In this paper, we study the capacity of aqueous nanoreactors of AOT microemulsions for the formation of ultrasmall semiconductor QDs by fixing w = ([H2O]/[AOT]) and varying the concentration of CdS up to 100 mM. The CdS QDs in the MEs are evaluated using UV-vis spectroscopy, XRD, TEM, and light scattering. Particles are found to be controlled in 8.7 A-11.8 A. The UV-vis spectra are analysed using an accurate tight-binding (TB) approach and effective mass approximation (EMA). The TB method, being much more accurate than the EMA, gives results in good agreement with X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD reveals that the particles are mostly zinc-blend at low concentrations (> or =20 mM) but a mixture of zinc-blend and wurtzite at higher concentrations (100 mM). High concentrations of CdS are useful to improve the yield while best-utilizing nanoreactors and to give a tight control over size and polydispersity. MEs containing CdS are found to be stable over a month when kept in the dark.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum current modeling in nano-transistors with a quantum dot

Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Study of quantum size effects and optical characteristics in colloidal Cd1-xSnxTe quantum dotes

In this work, we report, optical properties of Cd1-xSnxTe quantum dots (x= 0.05, 0.10 and 0.15) synthesized in water using thioglycolic acid (TGA) as a modifier agent. The optical characterization of the samples was performed through absorption (UV) and photoluminescence spectra (PL). A red shift absorption and fluorescent emission peaks was observed which can be related t...

متن کامل

Study of quantum size effects and optical characteristics in colloidal Cd1-xSnxTe quantum dotes

In this work, we report, optical properties of Cd1-xSnxTe quantum dots (x= 0.05, 0.10 and 0.15) synthesized in water using thioglycolic acid (TGA) as a modifier agent. The optical characterization of the samples was performed through absorption (UV) and photoluminescence spectra (PL). A red shift absorption and fluorescent emission peaks was observed which can be related t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2006